发表论文

我们实验室在人工智能教育领域的最新研究成果

EduGPT: 面向教育场景的大规模语言模型
陈凯, 胡晓林, 邬长倜, 等
人工智能学报2024AI教育

本文提出了一个专门针对教育场景的大规模语言模型EduGPT。该模型通过在教育领域数据上的预训练和微调,能够更好地理解和生成教育相关内容,为智能教学提供支持。实验表明,该模型在教育任务上的表现显著优于通用语言模型。

Knowledge Tracing with Large Language Models: A New Paradigm
Chen Kai, Wu Changti, Hu Xiaolin, et al.
AIED2024AI教育

This paper presents a novel approach to knowledge tracing using large language models. We demonstrate that LLMs can effectively model student knowledge states and predict learning outcomes with higher accuracy than traditional methods.

MultiModal Learning in Educational Contexts
Chen Kai, Yuan Hang, Yang Shijun, et al.
ICLR2024多模态学习

We propose a new multimodal learning framework specifically designed for educational scenarios. Our model can effectively process and integrate text, images, and videos to enhance the learning experience.

FastLLM: 面向边缘设备的轻量级语言模型
陈凯, 邬长倜, 刘梓豪, 等
计算机学报2024大语言模型

本文提出了一种新的模型压缩方法,能够将大规模语言模型有效部署到资源受限的边缘设备上。通过创新的知识蒸馏和量化技术,模型大小减少90%的同时保持了85%以上的性能。

Privacy-Preserving AI Education: Challenges and Solutions
Chen Kai, You Yang, Ren Yukun, et al.
USENIX Security2024系统与安全

This paper addresses the critical privacy challenges in AI-enabled education systems. We propose a comprehensive framework that ensures student data privacy while maintaining the effectiveness of AI-driven personalized learning.

Adaptive Learning Systems: A Deep Learning Perspective
陈凯, 胡晓林, 孙钰晓, 等
智能计算机学报2023AI教育

本文从深度学习的角度重新思考自适应学习系统的设计。我们提出了一种新的自适应机制,能够根据学生的实时反馈动态调整学习内容和难度。

Efficient Cross-modal Attention for Educational Content Understanding
Chen Kai, Yuan Hang, et al.
NeurIPS2023多模态学习

We introduce a novel cross-modal attention mechanism that significantly improves the efficiency of multimodal learning in educational contexts. Our method achieves state-of-the-art performance while reducing computational costs.

安全可信的教育大模型:技术与实践
陈凯, 尤阳, 任昱坤, 等
信息安全学报2023系统与安全

本文系统性地探讨了教育领域大模型面临的安全挑战,提出了一套完整的安全防护方案。包括模型训练过程的隐私保护、推理阶段的防御机制等。